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1 More on Irreducibility Tests

1.1 Eisenstein’s criterion

Last lecture, we were applying the Eisenstein criterion to xp−1
x−1 = xp−1 +xp−1 + · · ·+x+ 1.

We saw that if we set z = x− 1, this equaled zp−1 + pzp−2 + · · ·+ p.
Why does this work? Let ζ = e2πi/p, and look at the ring Z[ζ]. Then p pactorizes as

(1− ζ)p−1u for some unit u. In an algebraic number theory course, we would say that p is
“totally ramified,” so Eisenstein’s criterion applies. Notice that the polynomial has roots
ζ, ζ2, . . . , ζp−1, the p-th roots of unity. We also have that (ζk−1) = (ζ−1)(ζk−1 + · · ·+ 1).
Conversely, ζ − 1 is divisible by ζk − 1, so ζk is also a root of 1.

1.2 Rational roots

The only linear factors of xn + an−1x
n−1 + · · ·+ a0 are of the form x− b for b dividing a0.

This is because (cx+ b)(· · · ) = xn + · · ·+ a0, so 1 = c× ∗ and a0 = b× ∗.

Example 1.1. It is not possible to trisect the angle of 120◦ with just a compass and
straightedge.1 We will show that we cannot construct 2 cos(40◦). We will not prove this
here, but any number that can be constructed cannot satisfy an irreducible polynomial of
degree n unless n is a power of 2. We want to show that 2 cos(40◦) satisfies an irreducible
polynomial in Z[x] of degree 3.

Look at z = e2πi/9 = cos(2π/9)+i sin(2π/9). This is an angle of 40◦. Then 2 cos(40◦) =
z + z−1. So we have the polynomial

0 = z9 − 1 = (z3 − 1)(z6 + z3 + 1),

which means that z6+z3+1 = 0. Rewriting this as z3+1+z−3 = 0 and letting c = (z+z−1)
we get

c3 − 3c+ 1 = 0.

1Professor Borcherds gets a lot of emails from people claiming to have proven Fermat’s last theorem,
Goldbach’s conjecture, or that is is possible to trisect any angle.
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To show that this is an irreducible polynomial, note that c3−3c+1 has no linear factors
over Q. We just have to check that factors of the constant term 1 are not roots.

If a polynomial of degree ≤ 3 has no linear factors, it is irreducible.2 So c3 − 3c+ 1 is
irreducible.

Example 1.2. The polynomials

x100 + 2, x100 + 3

are both irreducible. This is in contrast to in general, where polynomials of the form xn+b
can have “unexpected” factorizations. For example,

x100 + 4 = (x50 + 2x25 + 3)(x50 − 2x25 + 2).

2 Noetherian Rings and Hilbert’s Theorem

2.1 Noetherian rings and Noether’s theorem

Definition 2.1. A ring is Noetherian3 if all ideals are finitely generated.

Theorem 2.1. For a ring R, the following are equivalent:

1. R is Noetherian.

2. Every nonempty set of ideals has a maximal element.

3. Every strictly increasing chain I1 ( I2 ( I3 ( · · · of ideals is finite.

Proof. (2) ⇐⇒ (3): First note that (3) =⇒ (2) is just Zorn’s lemma in disguise. To get
(2) =⇒ (3), observe that if I1 ( I2 ( I3 ( · · · is infinite, then the set {I1, I2, I3, . . .} has
no maximal element.4

(1) =⇒ (3): Suppose that I1 ⊆ I2 ⊆ I3 ⊆ · · · is a chain of ideals. Put I =
⋃
i Ii.

Then I is an ideal. By condition (1), I = (x1, . . . , xn), so all xi are in some Im. Then
Im = Im+1 = · · · .

(3) =⇒ (1): Pick an ideal I. We want to show that I is finitely generated. Pick
any x1 /∈ I. If I = (x1), we are finished. Otherwise, pick x2 ∈ I with x2 6= x1 and
check if I = (x1, x2). If we are still not finished, continue abd we get (x1) ⊆ (x1, x2) ⊆
(x1, x2, x3) ⊆ · · · . The infinite chain must stop by condition (3), so I = (x1, · · · , xn) is
finitely generated.

2The same method makes it easy to check polynomials of degree ≤ 3, but, in Professor Borcherd’s words
“degree ≥ 4 is painful.”

3Emmy Noether found that a lot of theorems proven about polynomial rings using complicated techniques
could be simplified by using this condition.

4You may notice that we did not use any properties of rings here. This part of the equivalence is just a
general fact about partially ordered sets.
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Example 2.1. Let R = K[x1, x2, . . . ]. Then (x1) ( (x1, x2) ( (x1, x2, x3) ( · · · , so R is
not Noetherian.

Example 2.2. Let R = Z. We have the infinitely decreasing chain of ideals (2) ) (4) )
(8) ) (16) ) · · · . Rings without decreasing chains of ideals are called Artinian. It turns
out that all Artinian rings are Noetherian.

Theorem 2.2 (Noether). If R is Noetherian, so is R[x].

Proof. Suppose I is an ideal of R[x]. Look at the chain of ideals of R given by I0 ⊆ I1 ⊆
I2 ⊆ · · · , where Ik is the set of leading coefficients of polynomials in I of degree ≤ 0.

R is Noetherian, so for some m, Im = Im+1 = Im+2 = · · · . Pick the set of polynomials
of degree 0 whose leading coefficients generate I0 (which is finitely generated because R is
Noetherian). Do this for polynomials of degree 1, 2, etc. We only need to do this finitely
many times because Im = Im+1 = Im+2 = · · · . We now leave it as an exercise to show that
these finite sets generate I.

2.2 Hilbert’s theorem

Theorem 2.3 (Hilbert). Any ideal of K[x1, . . . , xn] is finitely generated.

Proof. Use induction on number of variables and then use Noether’s theorem.

The following example shows why this is important.

Example 2.3. Recall that ideals of K[x] are generated by 1 element, but this need not
be true for K[x, y]. Look at the ideal (x3, x2y, xy2, y2); this ideal must have at least 4
generators because no element in this set generates more than 1 of these 4 elements. In
general, ideals of K[x1, . . . , xn] need not be generated by n elements.

Example 2.4. This need not hold for infinitely many variables. K[x1, x2, x3, . . . ] has the
ideal (x1, x2, x3, . . . ), which cannot be generated by a finite number of elements.

Example 2.5. Look at the ideal (x) in K[x, y]. Then (x) is a ring (but without an
identity element) and is not finitely generated as a ring. For example, a generating set
could be

{
x, xy, xy2, . . .

}
. So we must pay attention to the distinction between being

finitely generated as an ideal of a ring and being finitely generated as a ring.

2.3 Rings of invariants and symmetric functions

Suppose a group G acts on a vector space V with basis {x1, . . . , xn}. So for g ∈ G,

g · x1 = g1,1x1 + g1,2x2 + · · ·+ g1,nxn

G also acts on polynomials in x1, . . . , xn by g · (p+ q=g · p+ g · q and g · (pq) = (g · p)(g · q).
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Definition 2.2. The ring of invariants is the set of polynomials fixed by G (that is, the
polynomials p such that g · p = p for all g ∈ G).

Can we find a finite number of invariants so all invariants are polynomials in them with
coefficients in K? Hilbert showed that this is often true, and about 50 years later, Nagata
found a counterexample which showed that it is not always true.

Definition 2.3. Let V have basis {x1, . . . , xn}, and let G be the symmetric group on
{x1, . . . , xn}. The ring of symmetric functions is the ring of invariant polynomials.5

Example 2.6. Here are some examples of symmetric functions:

x1 + x2 + x3 + · · ·xn

x1x2x3 · · ·xn
x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ xn−1xn

x1x2x3 + x1x2x4 + · · ·+ x1x3x4 + · · ·

Look at (x−x1)(x−x2) · · · (x−xn) = xn− (
∑
xi)x

n−1 + (
∑

i<j xixj)x
n−2 + · · ·±

∏
xi.

The coefficients of this polynomial are called the elementary symmetric functions.

Theorem 2.4. Any symmetric function is a polynomial in elementary symmetric func-
tions.

Proof. We produce an algorithm. The key point is to order the monomials in the right
way.6 We say xn1

1 x
n2
2 · · · ≥ xm1

1 xm2
2 · · · if (n1, n2, . . . ) ≥ (m1,m2, . . . ) in the lexicographic

order.
Suppose we have a symmetric polynomial p. Look at the biggest monomial in it, and

kill this monomial by subtracting the polynomial

q = (x1 + x2 + · · · )n1−n2(x1x2 + · · · )n2−n3(x1x2x3 + · · · )n3−n4 .

Note that all these terms are elementary symmetric functions. So p−q has a smaller largest
monomial. Repeating this process, we eventually get to 0 because it is not possible to have
an infinite sequence of strictly decreasing monomials (exercise).

5Symmetric functions have a very rich combinatorial theory, showing up in places such as the irreducible
characters of the symmetric group and the number of Young tableau of a given shape. If you want to learn
more about symmetric functions, you should check out my notes on Math 249, Algebraic Combinatorics!

6Ordering the monomials of a polynomial is very important in the study of Gröbner bases.
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